Untangling Cation Ordering in Complex Lithium Battery Cathode Materials – Simultaneous Refinementof X-ray, Neutron and Resonant Scattering Data

نویسندگان

  • P. S. Whitfield
  • P. W. Stephens
چکیده

The presence of multiple, neighbouring transition metals presents a challenge for powder diffraction when trying to locate individual elements in a structure. Combining the information in X-ray and neutron data in simultaneous refinements has historically been a powerful tool. However, increasingly complex compositions require more information and element contrast than two datasets can provide. This paper presents results demonstrating the application of resonant powder diffraction as additional datasets in simultaneous X-ray and neutron Rietveld refinements. Final results are presented for a simple layered R-3m structure with four cations, and preliminary results for a more complex monoclinic C2/m structure, again with four different cations. The more complex structure presents challenges with respect to the occupational constraints across sites with different multiplicities whilst allowing the lithium-to-transition metal ratio to refine. INTRODUCTION Lithium-ion batteries have largely replaced nickel-cadmium and nickel-metal hydride batteries for consumer electronics applications. This is due to their increased energy density, where increased functionality is being demanded from ever smaller devices. The lithium-ion cell relies on the ability of lithium ions to shuttle backwards and forwards between a cathode (usually a lithiated transition metal oxide) and anode (usually graphite). One of the more costly components of a lithium-ion battery is the cathode material, the conventional material being 328

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracting the redox orbitals in Li battery materials with high-resolution x-ray compton scattering spectroscopy.

We present an incisive spectroscopic technique for directly probing redox orbitals based on bulk electron momentum density measurements via high-resolution x-ray Compton scattering. Application of our method to spinel Li_{x}Mn_{2}O_{4}, a lithium ion battery cathode material, is discussed. The orbital involved in the lithium insertion and extraction process is shown to mainly be the oxygen 2p o...

متن کامل

A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material

In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C  synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...

متن کامل

Electrochemical Characterization of Low-Cost Lithium-Iron Orthosilicate Samples as Cathode Materials of Lithium-Ion Battery

Lithium-iron-orthosilicate is one of the most promising cathode materials for Li-ion batteries due to its safety, environmental brightness and potentially low cost. In order to produce a low cost cathode material, Li2FeSiO4/C samples are synthesized via sol-gel (SG; one sample) and solid state (SS; two samples with different carbon content), starting from Fe (III) in the raw materials (lo...

متن کامل

Visualizing redox orbitals and their potentials in advanced lithium-ion battery materials using high-resolution x-ray Compton scattering

Reduction-oxidation (redox) reactions are the key processes that underlie the batteries powering smartphones, laptops, and electric cars. A redox process involves transfer of electrons between two species. For example, in a lithium-ion battery, current is generated when conduction electrons from the lithium anode are transferred to the redox orbitals of the cathode material. The ability to visu...

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006